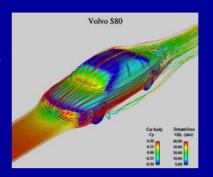
Optimization of Aerodynamic Aids for Autocross Racing

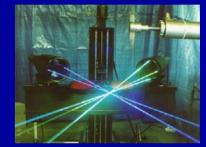
B3 Team Members:
Jason Robertson
Michael Morishita
James Grover
Joseph Chun

What is Autocross?

- Car Racing Competition based on lap times
- Different classes to separate cars based on performance, focusing on driver skill
- Speeds relatively low, ~60 mph max
- Track is narrow and outlined by cones
- Usually held in large parking lots

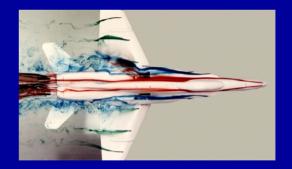
Overall Project Goals


- Optimize car aerodynamics for best overall autocross score
- Experimentally determining aerodynamic characteristics (drag and streamlines) of different car configurations
- Correlate experimental data to full-scale car


Team Assignments and Organization

- CFD Team
 - Jason and James
- Water Tunnel Team
 - Mike and Joey
- Full-Scale Testing
 - Everyone

Task Descriptions Overview


CFD Flow Analysis

Water Tunnel LDV Testing

 Water Tunnel Flow Visualization

Full-Size Car Testing

Task Descriptions

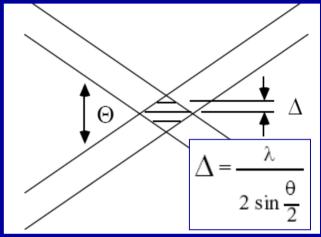
- Computational Fluid Dynamics (CFD) Flow Analysis
 - COSMOS FloWorks will be used to run simulations
 - All simulations will run on 1:1 scale model from SolidWorks
 - Several configurations will be simulated (targa top, windows, spoilers)
 - Collect quantitative measurements of drag and qualitative data on streamlines
- Water Tunnel LDV Testing
 - Compare/measure drag between configurations
 - 2-D flow velocity survey upstream / downstream of model

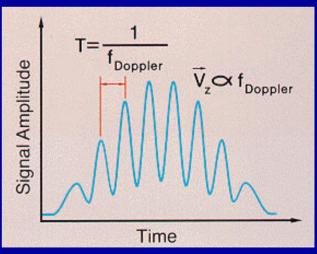
Task Descriptions

- Water Tunnel Flow Visualization
 - Dye used to visualize streamlines around car
 - Each configuration will be tested
 - Will validate the FloWorks CFD analysis
- Full-Size Car Testing
 - Coast down testing to compare drag between configurations
 - Yarn Testing to visualize flow around car

Schedule

Task	owner	week	1 v	veek 2	week 3	week 4	week 5	week 6	week 7	week 8	week 9	week	10
>> Setup Phase			Т										
Meet with Project Advisors	Group												
Low Speed Aerodynamics Research	Jason												
Finalize Plan of Action	Group												
Learn COSMOS FloWorks	James												
Fab. Adapter for WC mount	Mike												
Purchase/Fabricate necessary parts	Group												
Prepare Scale Models for Testing	Joey												
Improve Solidworks Model	Jason												
Setup Water Channel	WC Team												
Setup Dye Chamber	WC Team												
Setup FloWorks Model	CFD Team												
>> Testing Data Analysis Phase													
Run Solidworks Flow Analysis	CFD Team												
Run Water Channel Tests	WC Team												
Analyze Data	Group												
Write Report	Group												
Hand Over Results	Group												


Issues


- Three other teams working with water channel this quarter
- Sealing plate w/ mount needs to be fabricated for dyevisualization water tunnel

Theoretical and Experimental Methods

Laser Doppler Velocimetry

- Two intersecting lasers create a fringe pattern with known maxima spacing Δ .
- Particles inserted in flow travel through fringe pattern, scattering light at measured frequency f_{Doppler}
- Local flow velocity $V = f_{Doppler}^* \Delta$
- Comparing upstream / downstream flow velocity profiles and applying momentum principles yields object drag

Theoretical and Experimental Methods

Coast-down Drag Testing

 Will provide drag comparisons for various aerodynamic configurations

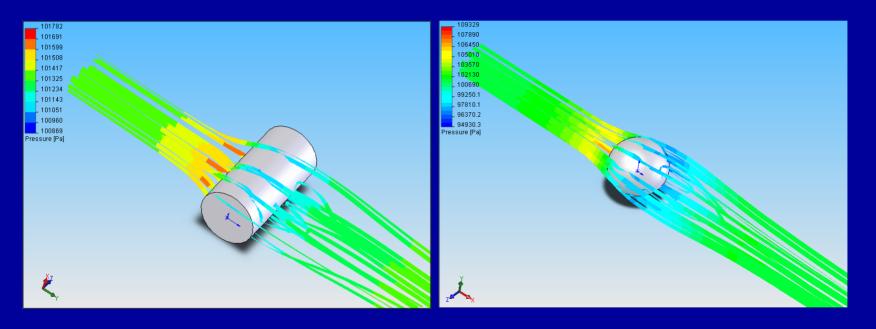
- Measure time t to decelerate between set V₁ and V₂
 - Average Acceleration Rate: $a = (V_2-V_1)/t$ (a<0)
 - Average total drag force F_d = m * a (= F_{roll}, + F_{aero})
 - Can then estimate C_d:

$$C_{D} = \frac{Drag}{\frac{1}{2} \rho U_{1\infty}^{2} \cdot A_{p}}$$

Progress to Date: Mike

- Designed and fabricated mounting system to hold car model in water tunnel.
- Currently ready for LDV testing.

Progress to Date: Joey


- Prepared 1/18th Scale models for water tunnel testing (windows, smoothing, etc.)
- Wrote LDV macros for water tunnel drag measurements

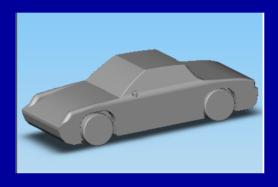
Progress to Date: James

- Familiarized with FloWorks
- Completed Drag Analysis On Cylinder and Sphere

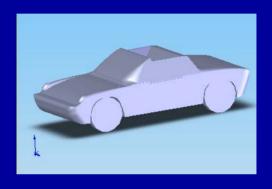
cylinder 1m.SLDPRT [Re 1e5]

Goal Name	Unit	Value	Averaged Value	Minimum Value	Maximum Value
GG X - Component of Force1	[N]	0.475516538	0.48948	0.475052	0.502829
Drag Coefficient		0.463924241	0.477547	0.463471	0.490571

Progress to Date: Jason


SolidWorks CAD Model

Properly scaled


Added side mirrors

Improved modeling of:

- Headlights
- A-pillar
- Front end
- Rear end

New Model

Last Year's Model

Actual Vehicle

Questions?